Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Vis Exp ; (195)2023 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-37306422

RESUMO

Metal-organic frameworks (MOFs) are hybrids formed through the coordination of metal ions and organic linkers in organic solvents. The implementation of MOFs in biomedical and industrial applications has led to concerns regarding their safety. Herein, the profile of a selected MOF, a zeolitic imidazole framework, was evaluated upon exposure to human lung epithelial cells. The platform for evaluation was a real-time technique (i.e., electric cell-substrate impedance sensing [ECIS]). This study identifies and discusses some of the deleterious effects of the selected MOF on the exposed cells. Furthermore, this study demonstrates the benefits of using the real-time method versus other biochemical assays for comprehensive cell evaluations. The study concludes that observed changes in cell behavior could hint at possible toxicity induced upon exposure to MOFs of different physicochemical characteristics and the dosage of those frameworks being used. By understanding changes in cell behavior, one foresees the ability to improve safe-by-design strategies of MOFs to be used for biomedical applications by specifically tailoring their physicochemical characteristics.


Assuntos
Estruturas Metalorgânicas , Humanos , Bioensaio , Impedância Elétrica , Eletricidade , Células Epiteliais
2.
Nanomaterials (Basel) ; 11(6)2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34064252

RESUMO

Properties such as large surface area, high pore volume, high chemical and thermal stability, and structural flexibility render zeolitic imidazolate frameworks (ZIFs) well-suited materials for gas separation, chemical sensors, and optical and electrical devices. For such applications, film processing is a prerequisite. Herein, matrix-assisted pulsed laser evaporation (MAPLE) was successfully used as a single-step deposition process to fabricate ZIF-8 films. By correlating laser fluency and controlling the specific transfer of lab-synthesized ZIF-8, films with user-controlled physical and chemical properties were obtained. Films' characteristics were evaluated by scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) spectroscopy, X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, and X-ray photoelectron spectroscopy (XPS). The analysis showed that frameworks of ZIF-8 can be deposited successfully and controllably to yield polycrystalline films. The deposited films maintained the integrity of the individual ZIF-8 framework, while undergoing minor crystalline and surface chemistry changes. No significant changes in particle size were observed. Our study demonstrated control over both the MAPLE deposition conditions and the outcome, as well as the suitability of the listed deposition method to create composite architectures that could potentially be used in applications ranging from selective membranes to gas sensors.

3.
Int J Nanomedicine ; 14: 7583-7591, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31571865

RESUMO

INTRODUCTION: The flexibility and tunability of metal organic frameworks (MOFs), crystalline porous materials composed of a network of metal ions coordinated by organic ligands, confer their variety of applications as drug delivery systems or as sensing and imaging agents. However, such properties also add to the difficulty in ensuring their safe implementation when interaction with biological systems is considered. METHODS: In the current study, we used real-time sensorial strategies and cellular-based approaches to allow for fast and effective screening of two MOFs of prevalent use, namely, MIL-160 representative of a hydrophilic and ZIF-8 representative of a hydrophobic framework. The two MOFs were synthesized "in house" and exposed to human bronchial epithelial (BEAS-2B) cells, a pertinent toxicological screening model. RESULTS: Analysis allowed evaluation and differentiation of particle-induced cellular effects as well identification of different degrees and routes of toxicity, all in a high-throughput manner. Our results show the importance of performing screening toxicity assessments before introducing MOFs to biomedical applications. DISCUSSION: Our proposed screening assays could be extended to a wider variety of cell lines to allow for identification of any deleterious effects of MOFs, with the range of toxic mechanisms to be differentiated based on cell viability, morphology and cell-substrate interactions, respectively. CONCLUSION: Our analysis highlights the importance of considering the physicochemical properties of MOFs when recommending a MOF-based therapeutic option or MOFs implementation in biomedical applications.


Assuntos
Células Epiteliais/patologia , Pulmão/patologia , Estruturas Metalorgânicas/toxicidade , Estruturas Metalorgânicas/uso terapêutico , Testes de Toxicidade , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Humanos , Estruturas Metalorgânicas/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...